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Abstract. A simpli®ed analytical treatment of rather complex defect equilibria involving systems with

multivalent dopants is presented. This approach is ®rst demonstrated for the case of Gd2Ti2O7 doped with multiple

valent donors, in which the effects of variations in donor ionization levels and in the equilibrium constants on the

defect equilibria are examined. The conductivity data of U doped CeO2 are then evaluated, leading to equilibrium

constants in good agreement with previous results, but allowing a more complete analysis.
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Introduction

The growing interest in the development of solid

oxide fuel cells, oxygen sensors and oxygen exchange

membranes [1] has generated increased demands for

higher oxygen ion conductivities in solid oxide

electrolyte materials, and high but controlled levels

of mixed ionic-electronic conduction (MIEC) in

electrode or oxygen exchange membrane materials.

In recent reports [2], we have emphasized the need

for versatile host oxides in which the levels of ionic

and electronic conductivities can be controlled in such

a way that structurally and chemically compatible

solid electrolytes and MIECs can be derived. Such

compatible systems enable ease of fabrication and

extended life [3]. We have found that the pyrochlore

oxide system, Gd2(TixZr1ÿx)2O7 (GTZ) exhibits the

level of versatility required for the above objectives.

GTZ with x� 0.3 is intrinsically disordered and

exhibits high levels of predominantly oxygen ion

conductivity [4]. The titanate end-member, GT

(x� 0), is also an excellent ionic conductor when

doped with Ca on the Gd site [5].

In the process of attempting to simultaneously

introduce high levels of ionic and electronic con-

ductivity into GT, we have found it useful to dope the

materials with multivalent ions such as Mn [6], Mo [7]

and Ru [8]. This, however, has resulted in systems

which are much more dif®cult to analyze. First, the

multiple oxidation states of the dopants considerably

complicate the defect structure. Second, because these

elements often form impurity bands, the number of

possible mobile electronic species increases. We

found that the standard use of the Brouwer approxi-

mation [9] was inadequate in treating key

experimental data which often fell within transition

regimes separating the approximate Brouwer regimes.

Re-examining the approaches used for solving the

defect relations, we successfully developed an

analytical solution considerably more convenient

then the numerical solutions often used [10]. In this

paper we describe the approach taken to achieve such

analytical solutions even under circumstances where

such solutions were believed not to exist [9,10]. This

approach was ®rst applied, in a simpli®ed manner, by

Porat and Riess [11,12], followed more recently by a

more general approach by Spinolo and Anselmi-

Tamburini [13]. We illustrate the utility of these

solutions by applying them to a number of relevant

problems of interest.

In a following paper [14], we examine how

impurity band contributions to the total electrical



conductivity can be predicted on the basis of the

analytical solution to the defect density obtained in

this paper, the degree of impurity band ®lling and the

proposed electronic carrier mobility mechanisms

(small versus large polaron) in the various bands.

In subsequent papers, we apply the combined

defect and mobility analyses to experimental measure-

ments recently obtained on GT doped with Mn, Nb, W

or Mo. Preliminary experimental results on these

systems may be found in references [6,7,15],

respectively.

Defect Chemistry

In many oxide systems lattice disorder occurs

predominantly on the anion sublattice. Under these

circumstances, the intrinsic lattice defects are anion

Frenkel pairs, i.e., doubly ionized oxygen interstitials

and vacancies, O00i and V??
O , respectively, while the

cations, represented as M, are immobile. At times, one

can ®nd these defects in a lower ionization stateÐi.e.,

singly ionized O0i and V?
O. The charged oxygen defects

may also be compensated by electronic carriers, i.e.

electrons e0, and holes, h? , or by charged impurities

such as acceptors: A0M and A00M and donors: D?
M and

D??
M . The impurities may be deep or shallow, neutral,

singly or multi-ionized (here we treat a maximum of

two ionization states). The neutrality condition, under

these circumstances, is written as:

�O0i� � 2�O00i � � �A0M� � 2�A00M� � n

� �V?
O � � 2�V??

O � � �D?
M � � 2�D??

M � � p

�1�
[ ] stands for ionic defect concentration, n and p are

the concentration of electrons and holes in the

conduction and valence bands, respectively. For the

purpose of demonstrating our approach to solving

such a complex equilibrium condition analytically,

we assume a donor doped system, i.e.:

�O0i� � 2�O00i � � n

� �V?
O � � 2�V??

O � � �D?
M � � 2�D??

M � � p

�1a�
The same treatment can be performed readily for the

complete defect system, i.e., Eq. (1), as will become

obvious from the following.

The relevant defect formation reactions (ignoring

neutral oxygen defects), along with their mass action

relations, assuming dilute solution, are:

Reduction reaction:

OO ,
1

2
O2 � V??

O � 2e0; KR�T� � Po
1=2
2 �V??

O �n2 �2�

Frenkel reaction:

OO , V??
O � O00i ; KF�T� � �V??

O ��O00i � �3�
Ionization reactions:

V?
O , V??

O � e0; KV2�T��V?
O� � �V??

O �n �4�
O00i , O0i � e0; KI2�T��O00i � � �O0i�n �5�
Dx

M , D?
M � e0; KD1�T��Dx

M� � �D?
M�n �6�

D?
M , D??

M � e0; KD2�T��D?
M� � �D??

M �n �7�
Electron-hole generation-recombination:

nil, e0 � h?; Ke � n ? p �8�
KR, KF, KV2, KI2, KD1, KD2 and Ke are the reaction

constants, having the form K�T� � K0 exp�ÿE=kBT�,
where K0 includes the entropy term, E is the reaction

enthalpy, and kB is the Boltzmann constant.

In addition we have the law of mass conversation :

�Dx
M� � �D?

M� � �D??
M � � constant � D �9�

Eqs. (1)±(9) allow one to calculate the defect

concentrations as a function of Po2, T and D.

We ®rst present all the defect concentrations as a

function of n, using Eqs. (1)±(9):

�V??
O � �

KR

n2
Po
ÿ1=2
2 �10�

�O00i � �
KFn2

KR

Po
1=2
2 �11�

�V?
O� �

KR

KV2n
Po
ÿ1=2
2 �12�

�O0i� �
KI2KFn

KR

Po
1=2
2 �13�

�D?
M� �

KD1Dn

n2 � nKD1 � KD1KD2

�14�

�D??
M � �

KD1KD2D

n2 � nKD1 � KD1KD2

�15�

�Dx
M� �

Dn2

n2 � nKD1 � KD1KD2

�16�

p � Ke=n �17�
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By substituting Eqs. (10)±(17) into the neutrality

equation (Eq. (1a)), one obtains a relation between n
and Po2 given by:

n � �V?
O� � 2�V??

O � � �D?
M� � 2�D??

M � � pÿ �O0i� ÿ 2�O00i �
� KR

KV2n
Po
ÿ1=2
2 � 2

KR

n2
Po
ÿ1=2
2 � KD1Dn

n2 � nKD1 � KD1KD2

� 2
KD1KD2D

n2 � nKD1 � KD1KD2

� Ke

n
ÿ K12KFn

KR

Po
1=2
2

ÿ 2
KFn2

KR

Po
1=2
2 �18�

If, as is commonly done, one attempts to solve Eq.

(18) for n, one obtains a 6th order polynomial in n,

leading to an non-analytical solution [10]. One may

note, however, that the Po2 dependence comes only

from the reduction reaction (2). By solving instead

for Po
1=2
2 , one obtains a simple quadratic equation

with only one physically meaningful solution:

Po
1=2
2 �n� � �ÿb� �b2 ÿ 4ac�1=2�=2a �19�

with:

a � �K12KFn=KR � 2KFn2=KR�

b � nÿ KD1Dn� 2KD1KD2D

n2 � nKD1 � KD1KD2

ÿ Ke

n

� �
c � �KR=KV2n� 2KR=n2�

By substituting values for the equilibrium con-

stants and appropriate test values for n into Eq. (18),

one obtains corresponding values for Po2 at each

isotherm. These coupled values of n and Po2 can then

be substituted into Eqs. (10)±(17), to obtain values for

the other defects of interest.

It is easily seen that the addition of the other

defects contained in Eq. (1) will not change the

quadratic nature in Po2 of Eq. (18), and can be used to

obtain an analytical solution for the complete case.

The key principle is to present the defect concentra-

tion linearly in either Po
1=2
2 or Po

ÿ1=2
2 . This principle

can be further generalized to systems in which

divalent cation defects are also included in the

neutrality equation.

Defect Concentrations in Donor Doped Gd2Ti2O7

To illustrate the utility of the analytical solutions to

the defect relations of the form presented in Eq. (18),

we use the system Gd2Ti2O7, for which many of the

key equilibrium constants (see Table 1) have recently

been reported [8,16]. In Fig. 1 we show the calculated

defect concentrations as a function of Po2 at 1000�C.

In this case, we selected an imaginary donor

with rather deep levels, ED1� 0.53 eV and ED2�
2.78 eV, where ED1 and ED2 are the locations of

the ®rst and second donor ionization levels, respec-

tively, and a total donor concentration of 10%

(D� 1.5� 1021 cmÿ3).

While the Po2 dependences of the defect concen-

trations vary continuously in the transition regions, it

remains useful, for purposes of comparison with

conventional analysis, to examine the different

Brouwer regions. Figure 1 can be divided into four

different Brouwer regions. In each, one defect on

either side of Eq. (1a) approximately controls the

neutrality equation, and as a consequence, the Po2

dependence of the various defects. At the highest Po2

(region I), D is completely oxidized to D?
M, and is

compensated by O00i : �D?
M� � 2�O00i � (see Fig. 1). At

lower Po2 (region II), D is largely de-ionized

��Dx
M�4�D?

M�� but the reduced neutrality condition

remains �D?
M� � 2�O00i �. At even lower Po2 (region III),

the majority of donors remain un-ionized, never-

theless D?
M and the compensating electrons, n, still

represent the dominant charged species: n � �D?
M�. At

the lowest Po2, (region IV), the reduction of the host

titanium takes over, leading to the neutrality condition

n � 2�V??
O �. The Po2 dependence of each defect is

altered when moving from one Po2 region to another.

Note, that the prediction of the existence of region II

would not be obvious taking the Brouwer approxima-

tion approach. Table 2 summarizes the various

approximate neutrality relations and the corre-

sponding defect ÿPo2 dependences.

Table 1. Values of reaction constants of Gd2Ti2O7 at 1000�C [8,16] used to prepare Fig. 1. KD1 and KD2 were selected

for an imaginary donor impurity

KF (cmÿ6) KR (cmÿ9 atm1/2) KV2 (cmÿ3) KI2 (cmÿ3) Ke (cmÿ6) KD1 (cmÿ3) KD2 (cmÿ3)

1033 1.5� 1047 1025 1012 4� 1031 1017 1010

Simpli®ed Analytical Treatment of Defect Equilibria: Applications to Oxides with Multivalent Dopants 43



Impact of Donor Ionization Energies on the
Defect Equilibria

As might be expected, the defect concentrations and

their Po2 sensitivities are strongly dependent on the

choice of the donor dopants. This is illustrated in

Fig. 2, in which we plot n for ®ve different cases.

Again we use the constants from Table 1 and

D� 10 mol%. We consider the following cases: (#1)

The two donor states are shallow (i.e., in region III

n� 2D). (#2) The ®rst ionization state is shallow,

while the second is very deep. (#3) The two states are

Fig. 1. Model prediction of the atmospheric dependence of defect concentrations in donor doped Gd2Ti2O7. Roman numerals represent the

different approximate electroneutrality conditions (see text). Vertical dashed lines represent region boundaries.
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rather deep, and are close in energy. (#4) The ®rst

state is rather deep, while the second is much deeper.

(#5) Both levels are very deep, with virtually no

ionization. The Po2 dependence of the other defects

can be derived from n using Eqs. (10)±(17).

Due to the shallow ionization energies corre-

sponding to curves #1 and #2, complete ionization

of at least one level results in n � D in regime III.

These curves show three regions instead of four, since

region II is largely non-existant, and this presents, for

n, a single slope of ÿ1/4 at high Po2. Note the

marginal difference between the two curves, only a

factor of 2 in the plateau region (III).

For the other extreme case of very deep donors

(curve #5). the condition n � 2�V??
O �, regime IV,

extends to much higher Po2. Here, at intermediate

Po2, Frenkel pairs dominate, �V??
O � � �O00i �, rather than

donors, and n / Po
ÿ1=4
2 . At the highest Po2 we have

p � 2�O00i � and as a consequence n / Po
ÿ1=6
2 :

Table 2. The slope qlog[ ]/qlog Po2 of the various defects at the

different Po2 regions (EC: electroneutrality condition)

EC 2�O00i � � �D?
M� n � �D?

M� n � �V??
O �

Region ! I II III IV

Defect # �Dx
M�5D �Dx

M� � D

n ÿ1/4 ÿ1/6 0 ÿ1/6

p 1/4 1/6 0 1/6

V??
O 0 ÿ1/6 ÿ1/2 ÿ1/6

O00i 0 1/6 1/2 1/6

V?
O ÿ1/4 ÿ1/3 ÿ1/2 ÿ1/3

O0i 1/4 1/3 1/2 1/3

Dx
M ÿ1/4 0 0 0

D?
M 0 1/6 0 1/6

D??
M 1/4 1/3 0 1/3

Fig. 2. Po2 dependence of n for different dopant energies: #1: Two shallow donor levels. #2: One shallow donor level. #3: Two deep but

close levels. #4: One deep and a second very deep level. #5: Undoped system. Roman numerals represent the different electroneutrality

conditions as in Fig. 1.
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The two curves representing reasonably deep

levels (#3, #4), exhibit similar behavior at low and

intermediate Po2's-regions IV and III respectively.

Note that region III shrinks, as compared to that in

curves #1 and #2. At higher Po2, curve #4 exhibits the

same Po2 dependence as in Fig. 1, i.e., n / Po
ÿ1=6
2 in

region II, while n / Po
ÿ1=4
2 in region I. Curve #3

shows an interesting behavior, and is composed of

three different regions at high Po2. This is due to the

fact that at this Po2 range the neutrality condition

becomes 2�O00i � � �D?
M� � 2�D??

M �. Increasing Po2 and

moving down from the plateau (region III), oxidizes

Dx
M to D?

M, therefore 2�O00i � � �D?
M� and again

n / Po
ÿ1=6
2 (region IIa). Then, the second ionization

takes over so �O00i � � 2�D?
M� and n / Po

ÿ1=8
2 (IIb). This

defect regime was not found for the parameters used

to calculate Fig. 1. Lastly Dx
M is completely ionized at

suf®cient high Po2 (region I), and n / Po
ÿ1=4
2 .

Impact of Reaction Constants of Host Material
on Defect Equilibria

Next we demonstrate how changes in the magnitude

of the different equilibrium constants, KR, KF, KI2 and

KV2 impact defect densities and the location of the

different defect regimes. These constants, for

example, are altered as one varies the composition

of a solid solution. For example, increasing x in

Gd2(ZrxTi1ÿx)2O7 leads to large and systematic

increases in Frenkel disorder and the corresponding

Frenkel constant [17]. The effects of such variations

on n are illustrated in Fig. 3. Curve #1 is calculated

with the same equilibrium constants as used before in

Fig 3. Po2 dependence of n for different equilibrium constants of the host material. #1: reference curve, as in Fig. 1 #2: smaller KF #3:

smaller KR #4: larger KI2 and #5: smaller KV2, respectively, compared to the corresponding values in #1. Roman numerals as in Fig. 1.

*The calculated data for curves #2 and #3 are offset by factors of 10 and 0.1, respectively, for clarity.
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Fig. 1, and serves as a reference. When one decreases

KF by three orders of magnitude (curve #2), regime III

broadens by extending to higher Po's. This follows

from the fact that the intrinsic value of �O00i � is smaller,

and so the condition 2�O00i � � �D?
M� is only achieved at

higher Po2.

Curve #3 was calculated using a smaller reduction

constant KR �1� 1044 cmÿ3�. This results in an

extension of region III to lower Po2's, since now

lower Po2's are required to generate �V??
O � equal to the

same �D?
M�. On the other hand, the II/III boundary

shifts to lower Po2 since a less oxidizing environment

is necessary to generate suf®cient numbers of

interstitials to satisfy 2�O00i � � �D?
M�.

Curve #4 was calculated using a larger KI2 constant

(by a factor of 104), i.e., an increased concentration of

singly ionized oxygen interstitials, O0i. This reaction,

which is enhanced at lower temperatures and higher

Po2's, results in an interesting trend at high Po2. Since

the neutrality condition at high Po2's becomes

�D?
M� � 2�O00i � � �O0i�, with O00i more important at

intermediate Po2 and more important at higher Po2,

the slope of log(n) vs log(Po2) changes from ÿ1/6 in

region II to ÿ1/2 in region Ia.

In a similar manner, curve #5 was calculated with a

105 times smaller value for KV2. This results in a

separate region (IVa), where the neutrality condition

is n � �V?
O�, resulting in a change of slope for n at the

lowest Po2's from ÿ1/6 in region IVb to ÿ1/4 in

region IVa.

Electrical Conductivity in Uranium Doped CeO2

To further test the utility of this solution, we apply

it to our earlier measurements of the electrical

Fig. 4. Solid lines correspond to ®t of model to experimental electrical conductivity data of: Ce0.95U0.05O2 (d), Ce0.99U0.01O2 (s) and

Ce0.999U0.001O2 (n) at 666�C. Experimental data from [18].
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conductivity of uranium doped ceria [18]. While the

key elements of the defect equilibria of this system

were determined using a more approximate approach,

some details of the dependence of s on Po2 were not

re®ned. As before, we assume predominant n-type

conductivity, se � enme, where e is the elementary

charge and me is the electron mobility. Figure 4

presents the results of ®tting Eq. (19) to the

experimental data reported for Ce1ÿxUxO2 with

x� 0.001, 0.01 and 0.05 at 666�C [18], with me

taken from the same reference. In Table 3 we present

values for KR, KF obtained from this ®tting, as

compared to literature values. While our results are in

good agreement with previous results, we also

successfully ®t the reaction constant KI2 of Eq. (5),

by careful analysis of the Po2 dependence of se at high

Po2 for Ce0.95U0.05O2.

Summary

We have presented an improved means of calculating

defect concentrations in systems with donors and/or

acceptors with multiple valence. By rearrangement of

the neutrality equation, one obtains Po2 as a function

of n instead of n(Po2). This enables a simple analytical

solution, even in a system with many defect types.

This principle is demonstrated for the case of

doped Gd2Ti2O7 with multiple valent donors, in

which the effect of variation in donor ionization

levels and in the equilibrium constants on defect

concentrations and their respective Po2 dependences

are examined. New, unexpected defect regimes are

identi®ed in this manner.

The model was ®t to conductivity data previously

reported for uranium doped ceria. The equilibrium

constants derived in this manner were found to be in

good agreement with previous results. The present,

more sophisticated model allowed, however, for the

®rst time, extraction of values of KI2.

Acknowledgment

This work was supported by Basic Energy Sciences,

Department of Energy under Grant #DE-FGO2-

86ER45261. The Authors thank Dr. T. Norby for

bringing [13] to the attention of the authors during

the review process.

References

1. M.C. Williams, pp. 10±19 in Solid Oxide Fuel Cells IV,

M. Dokia, O. Yamamoto, T. Tagawa, and S.C. Singhal, eds.

(The Electrochemical Society, Pennington, NJ, 1995).

2. H.L. Tuller, pp. 139±153 in High Temperature
Electrochemistry: Ceramics and Metals F.W. Poulsen, N.

Bonanos, S. Linderoth, M. Mogensen, and B. Zachau-

Christiansen, eds. (Risù National Laboratory, Roskilde,

Denmark, 1996).

3. H.L. Tuller, S.A. Kramer, and M.A. Spears, US Patent

(#5,403,461, April 4, 1995).

4. H.L. Tuller, S.A. Kramer, and M.A. Spears, pp. 151±173 in

High Temperature Electrochemical Behavior of Fast Ion and
Mixed Conductors F.W. Poulsen, J.J. Bentzen, T. Jakobsen, E.

Skou, and M.J.L. Ostergaard, eds. (Risù National Laboratory,

Roskilde, Denmark, 1993).

5. S. Kramer and H.L. Tuller, Solid State Ionics, 82, 15±23 (1995).

6. O. Porat, M.A. Spears, C. Heremans, I. Kosacki, and H.L.

Tuller, Solid State Ionics, 86±88, 285±288 (1996).

7. O. Porat, C. Heremans, and H.L. Tuller, J. Am. Ceram. Soc. (in

press).

8. M.A. Spears and H.L. Tuller, pp. 94±105 in Ionic and Mixed
conducting Ceramics, (Proc. Vol. 94-12). T.A. Ramanarayanan,

W.L. Worrell, and H.L. Tuller, eds. (The Electrochemical

Society, Pennington, NJ, 1994).

9. G. Brouwer, Philips Research Repts., 9, 366 (1954).

10. M.A. Spears and H.L. Tuller, pp. 271±288 in Solid State Ionics
IV (vol. 369), G.A. Nazri, J.-M. Tarascon, and M. Schreiber,

eds. (Materials Research Society, Pittsburgh, PA, 1995).

11. O. Porat, Ph.D. Thesis, The Technion, Israel Institute of

Technology (1994).

12. O. Porat and I. Riess, Solid State Ionics, 81, 29 (1995).

13. G. Spinolo and U. Anselmi-Tamburini, Ber. Bunsenges. Phys.
Chem., 99, 87±90 (1995).

14. O. Porat and H.L. Tuller, in preparation.

15. I. Kosacki and H.L. Tuller, pp. 703±708 in Solid State Ionics IV,
(vol. 369), G.A. Nazri, J.-M. Tarascon, and M. Schreiber, eds.

Table 3. Values of equilibrium constants for uranium doped CeO2 at 666�C

Present study Stratton and Tuller [18]

Composition KF (cmÿ6) KR (cmÿ9 atm1/2) KI2 (cmÿ3) KF (cmÿ6) KR (cmÿ9 atm1/2)

Ce0.999U0.001O2 9� 1027 4� 1048 5.8� 1027 2.25� 1048

Ce0.99U0.01O2 1.5� 1026 4� 1047 1.45� 1026 4.1� 1047

Ce0.95U0.05O2 10� 1025 1.75� 1047 5� 1021 9.7� 1025 1.75� 1047

48 Porat and Tuller



(Materials Research Society, Pittsburgh, PA, 1995).

16. M. Spears and H.L. Tuller, pp. 301±306 in Solid State Ionics III
(Vol. 293).G-A. Nazri, J-M. Tarascon, and M. Armand, eds.

(Materials Research Society, Pittsburgh, PA, 1993).

17. P.K. Moon and H.L. Tuller, Solid State Ionics, 28±30, 470±74

(1988).

18. T.G. Stratton and H.L. Tuller, J. Chem. Soc., Faraday Trans. 2,

83, 1143±56 (1987).

Simpli®ed Analytical Treatment of Defect Equilibria: Applications to Oxides with Multivalent Dopants 49


